Graphon Signal Processing
[[lecture-main-topic-data]]
<< insert summary of topic here >>
Concepts
| File |
status |
type |
Lectures |
| bandlimited convergent graph signals converge in the fourier domain |
complete |
🧮 |
2025-04-02 lecture 17, 2025-04-07 lecture 18 |
| bandlimited graphon signal |
complete |
💡 |
2025-04-02 lecture 17, 2025-04-07 lecture 18 |
| c band cardinality |
complete |
💡 |
2025-04-07 lecture 18 |
| c eigenvalue margin |
complete |
💡 |
2025-04-07 lecture 18 |
| convergence bound for graph convolutions |
complete |
🧮 |
2025-04-07 lecture 18 |
| Davis-Kahan Theorem |
complete |
🧮 |
2025-04-02 lecture 17 |
| eigenvalues of the induced graphon converge pointwise to the eigenvalues of the limit |
complete |
🧮 |
2025-04-02 lecture 17, 2025-03-31 lecture 16 |
| fixed coefficients yield the same spectral response for both graphon and graph convolutions |
in progress |
💡 |
|
| graphon convolution |
complete |
💡 |
2025-04-02 lecture 17, 2025-04-07 lecture 18, 2025-04-09 lecture 19, 2025-03-26 lecture 15 |
| graphon fourier transform |
complete |
💡 |
2025-04-02 lecture 17, 2025-03-31 lecture 16, 2025-04-07 lecture 18 |
| graphon shift operator |
complete |
💡 |
2025-04-02 lecture 17, 2025-03-31 lecture 16 |
| graphon shift operator eigenvalues |
complete |
🧮 |
2025-03-31 lecture 16, 2025-04-07 lecture 18 |
| graphon shift operators are self-adjoint |
complete |
🧮 |
2025-03-31 lecture 16 |
| lipschitz graph convolutions of graph signals converge to lipschitz graphon filters |
complete |
🧮 |
2025-04-07 lecture 18 |
| spectral representation of graphon convolutions |
complete |
🧮 |
2025-04-02 lecture 17, 2025-04-07 lecture 18 |
| we can write a graphon in the basis of its shift operator |
complete |
💡 |
2025-03-31 lecture 16, 2025-04-07 lecture 18 |
Mentions
const { dateTime } = await cJS()
return function View() {
const file = dc.useCurrentFile();
return <p class="dv-modified">Created {dateTime.getCreated(file)} ֍ Last Modified {dateTime.getLastMod(file)}</p>
}