l-p vector space

[[concept]]

Definition

Matrix Analysis

p norm

For Kn over K the p norm for pZ is defined as

||x||p=(i=1n|xi|p)1/p
  • When p=1 this is the "manhattan norm"
  • When p=2 this is the euclidean norm
  • ||x||=max(xi)

Functional Analysis

p space

p={a={aj}j=1|||a||p<}$$isthespaceof(infinite)sequences.Wedefinethe$p$normas$$||a||p:={(i=1|ai|p)1/p1p<sup1j<|aj|p=

Example

{1j}j=1pp>1 but not for p=1

References

References

See Also

Mentions

Mentions

const modules = await cJS()

const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  

const { dateTime } = await cJS()

return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}